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G.S. CAMPBELL AND J.M. NORMAN

1. The description and measurement of
plant canopy structure

Introduction

Plant canopy structure is the spatial arrangement of the above-ground organs
of plants in a plant community. Leaves and other photosynthetic organs on a plant
serve both as solar energy collectors and as exchangers for gases. Stems and branches
support these exchange surfaces in such a way that radiative and convective exchange
can occur in an efficient manner. Canopy structure affects radiative and convective
exchange of the plant community, so information about canopy structure is necessary
for modelling these processes.

In addition to considering how canopy structure and environment interact to affect
the processes occurring in the plant community, the influence of the canopy on the
environment should also be considered. The presence and structure of a canopy exert
a major influence on the temperature, vapour concentration, and radiation regime in
the plant environment. Interception and transmission of precipitation are also affected,
as are soil temperature and soil heat flow. Canopy structure can therefore be important
in determining the physical environment of other organisms within the plant
community, and can strongly influence their success or failure. Plant canopy structure
can indirectly affect such processes as photosynthesis, transpiration, cell enlargement,
infection by pathogens, growth and multiplication of insects, photomorphogenesis,
and competition between species in a plant community. The indirect influence on soil
moisture and temperature can also affect root growth, evaporative water losses from
the soil, residue decomposition and other soil microbial processes.

A complete and accurate description of a canopy would require the specification of
the position, size and orientation of each element of surface in the canopy. Such a
description is clearly impossible to obtain, except for very simple canopies, so that
data needs in terms of specific applications must be carefully considered. Canopy
properties are generally described statistically as appropriate space or time averages. In
some cases additional statistical parameters are needed for an adequate description of
the canopy.

Canopies vary on spatial scales ranging from millimetres to kilometres, and on time
scales ranging from milliseconds to decades. The description of this variation is an
important part of understanding and using canopy structure information.
Consideration of variation in structure can be useful in recognizing patterns which
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may exist, and using these patterns to maximize sampling efficiency or minimize
sampling errors.

Application of the principle of least work (Monteith, 1985) is particularly
appropriate to measurements of canopy structure. Because it is possible to invest a lot
of time and effort in measurements of canopy structure, it is particularly desirable to
determine data requirements before an extensive measurement programme is
undertaken.

Phytometric characteristics of plant canopies

The characterisation of plant canopies using various statistical parameters has
been presented in considerable detail by Ross (1981). The material presented here is
intended to be a brief summary. The reader is referred to the original work for
additional detail.

Ross (1981) recommends that descriptions of plant canopies should include
measurements at four levels of organisation: individual organs, the whole plant, the
pure stand, and the plant community. Each higher level of organisation is intended to
include elements from the next lower level, and to add parameters of its own.

At the individual organ level, parameters such as typical length, width, area, dry
mass, specific water content, and radiative properties of phytoelements are measured.
Whole plants are often symmetric, and have outlines which can be represented by
some geometric shape. The parameters which describe the geometric shape are
therefore useful as parameters for describing average characteristics of individual
plants. Ellipsoidal shapes have been suggested as good approximations to plant
outlines (Charles-Edwards & Thornley, 1973; Mann, Curry & Sharpe, 1979:
Norman & Welles, 1983). Plants which cannot be represented by a complete ellipsoid
can often be represented by a truncated ellipsoid. In addition to plant height and
other parameters which relate to the overall geometric shape of the plant, it may be
useful to record stem diameter at one or more locations, total number of leaves per
plant, number of nodes per plant, number of living leaves per plant, numbers of
stems and reproductive organs per plant, and spatial distribution of organs within
the plant outline.

In an attempt to maximise return for a given sampling effort, Ross (1981)
suggested a two-stage sampling process in which primary statistical characteristics
such as plant height, height of the top and bottom of the foliage canopy, stem height
and diameter, number of leaves (where possible) and number of living leaves (where
possible) are determined on an initial sample of 150-300 plants. These primary
characteristics are then examined to select 15-30 plants to be analysed in greater detail
to determine average characteristics of individual organs, spatial locations of organs,
and orientation of surfaces. If it is not possible to determine spatial locations of organs
within the plant envelope, parameters for simple models of foliage distribution should
be obtained. Mann er al. (1979) suggested three possible idealised distribution
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functions. The uniform, the quadratic, and the truncated normal. The uniform
distribution is based on the assumption that the probability of finding an element at
any location within the plant envelope is independent of position. The other two
distribution functions assume a higher density of foliage near the centre of the
envelope. Norman & Welles (1983) assumed a uniform density of foliage within the
ellipsoidal envelopes within which individual plants are contained, but allowed for the
possibility that ellipsoids with different densities could be placed concentrically.
Variations of area density within a given plant envelope were described by specifying
the dimensions of the various ellipsoidal shells and the average foliage density within
each shell.

At the pure stand and plant community levels of organisation, Ross (1981)
suggested four types of plant dispersion: regular, semi-regular, random, and clumped.
Regular dispersion results when plants are located at the vertices of a regular
parallelogram. An example of this would be an orchard planting, or a square or
hexagonally sown crop. Semi-regular dispersion results when plants are in rows, but
spacing within the row is random, as in many agricultural crops. In random
dispersion, there is an equal probability of finding a plant at any location, and with
clumped dispersion the probability of finding a plant in a given location is related to
the presence or absence of plants in the surrounding area.

A description of canopy organisation at the pure stand or plant community level
requires, at least, a measurement of the plant population density, i.e. the number of
each species of plant per unit area. For regular or semi-regular dispersion, plant or
row spacings are needed and for regular dispersion, angles of the vertices of the
parallelogram should also be determined. For random dispersion, only the plant
population density is relevant, while for clumped dispersion, it may be possible to
assume random dispersion within clumps, and define the size and distribution of the
clumps.

As plants grow, they may begin to overlap so that it is difficult to discern the outline
of a particular plant or row of plants. The time at which this occurs is termed ‘canopy
closure'. After canopy closure, radiative exchange and heat and mass transfer
processes can be treated using one-dimensional theory. Large plant communities,
where the horizontal dimensions are much larger than the vertical dimension, can also
be treated as one-dimensional. A one-dimensional model allows dramatic
simplification of the convective and radiative exchange processes. It may then be
assumed that the phytoelements are randomly distributed in space (rather than within
the plant envelope) or grouped around shoots which may themselves be randomly
distributed in space.

Canopies which can be modelled as a series of horizontal layers, using one-
dimensional models, are important in many agricultural and forest applications, and
much of the following analysis will deal with this simplified canopy type. Such
canopies are often described in terms of two parameters, the average area density of
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component j, pi(z) (m2m~-3), and the angle distribution function of component j,
g(z,rj). The index j is intended to apply to leaves (J), stems (s), and reproductive parts
(f) of the plant. The variable z, represents height in the canopy, and r; represents the
direction of a normal to the canopy element (i.e. azimuth, ¢;, and inclination 6,
angles). The function, g(z,rj) represents the probability of a normal to a canopy
element falling within an angle increment, d9,d¢. It is normalised so that the integral
of g(z,r;) over all angles in a hemisphere is unity.

Integrals of these parameters are often used. The downward cumulative area index
of component j in a canopy is

Li(z) = Lh nj(z) dz oy

where £ is the height of the top of the canopy, and z the height from the ground. The
leaf area index of a canopy (L) is the total area of leaves above unit area of soil, and
is given by eqn (1) when j = [ and the lower limit of integration is equal to zero.

The integral of the angle distribution function g(z,r)), is the canopy extinction
coefficient for a beam of radiation. This integral can be thought of as the average
projected area of canopy elements or the ratio of projected to actual element area. Ross
& Nilson (1965) define a G-function, which is the average projection of canopy
elements onto a surface normal to the direction of the projection. If the projection
zenith angle is 0 and azimuth angle ¢, then the G-function is calculated from the
weighted integral of g(z,r}) over the hemisphere:

1
Glzr) =2~ J f 8j(z.rj) lcos(rj,r)l dojde; , @
where
cos (rj,r) = cos 6; cos 6 + sin 8; sin 8 cos(6 - 6) , ®

8; is the inclination angle of the canopy elements (angle between the vertical and a normal
to the element) and 6; is the azimuth angle of the normal to the foliage element. The
integral is taken over azimuth angles from 0 to 2 and inclination angles from O to =/2.

A different extinction coefficient, the K-function, has been used by a number of
authors (Warren—-Wilson, 1965, 1967; Anderson, 1966, 1970). It is the average
projected area of canopy elements when they are projected onto a horizontal plane. It
is related to the G-function by

K(z,r) = G(z,r)/cos 6 . 4

Simplifications and idealizations

Having established some of the fundamental parameters that can be used to
characterise canopy structure, attention is now given to simplifications and
assumptions that reduce the number of measurements needed to describe the canopy.
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The equations presented in this section will be useful in the analysis of the methods of
measurement which will be covered later. We will begin by assuming a closed,
horizontally homogeneous canopy with canopy clements randomly spaced in the
horizontal. We will therefore be concerned only with the total area and vertical
distribution of canopy elements, and the angular distribution of canopy elements. We
will assume azimuthal symmetry of the plants, since measurements (Ross, 1981;
Lemeur, 1973) indicate that canopies often approximate to this.

Many of the models that are used for calculating radiant energy interception by
canopies require information only on area index and angle distribution, but models for
the turbulent exchanges of heat and mass, and calculations of the size of penumbra
also require a knowledge of the vertical distribution of area within the canopy. Ross
(1981) presented a number of examples of area density functions, u(z), for various
canopies. Norman (1979) and Pereira & Shaw (1980) modelled u(z) as a simple
triangle (Figure 1.1). In such a case, the area density is given by

U@y =um z-z2)/(zm—21), 21£z2<2m,
u(z) = um (h—2)/(h—zm), zm<£z<h, %)

with u(z) assumed zero outside this range. The maximum leaf area density, um is
calculated from

pm = 2Lo/(h-21) . (6)

In eqns. (5) and (6), & is the canopy height, z; is the lower boundary of the canopy,
zm is the height of maximum leaf area density, and Lg is the leaf area index of the
canopy.

The relationship between downward cumulative area index and height for such a
triangular area density distribution is found by integration of eqn (1). For the
triangular distribution assumed in eqn (5) the solution is

L/Lo = (1-2/m2/{(l~zm/h)(1-2/R)), zmSz<h,

L/Lo = 1 - (z—zp)/[(h-21)(zm~21), 21S 2 S 2 N

These equations allow one to describe the spatial distribution of canopy elements
using four easily measured parameters: A, zp, z1, and Lg. Fig. 1.1 compares measured
and predicted u(z) and L(z) for a maize canopy and indicates that these simple
descriptions are adequate for many of the purposes for which spatial distribution
information is needed.

Idealized leaf angle distribution functions have been widely used to approximate
actual leaf angle distributions. Several formulae have been given for constant leaf
inclination angles (but randomly distributed azimuthal angles). If all the leaves are
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inclined at a constant angle, 8¢, then the angle distribution function is given by (Ross,
1981):

8(8)) = 8(8j — 60) sin 6, t))

where 8(8j— 6p) is the Dirac delta function, the value of which is unity when 8;=6p
and zero otherwise. A horizontal distribution results when 84 = 0, a vertical or
cylindrical distribution when 89 = n/2, and a conical distribution when 6 is between
these values. It is useful to think of the distribution of leaf angles in a canopy as being
similar to the distributions of areas on various geometric objects. For example, if the
surface area of a cone, cylinder or horizontal plane were divided into small elements,
and the angle distribution of normals to the elements were determined, the angle
distribution of these normals would form a conical, cylindrical or horizontal
distribution function.

Another useful distribution function is the spherical, or uniform distribution. The
distribution of angles in a canopy with a spherical leaf angle distribution is similar to
the distribution of angles for small surface elements of a sphere. The angle distribution
function is

£(6) =sin ;. 9

With the exception of the spherical distribution, the distribution functions described
so far are discontinuous, and not at all representative of real canopies. Lemeur (1973)
suggested simulating real canopies as weighted sums of conical canopies having a
range of inclination angles. This has been useful in providing approximations to
canopy angle distributions, but requires many parameters to quantify the inclination
angle distribution. A more general form of the spherical distribution function, which is
continuous over the entire range of leaf angles, but which has horizontal or vertical

Fig. 1.1. Triangular distribution of canopy area density and the resulting leaf area
index distribution. Data points are for a maize canopy, and are taken from Pereira &
Shaw (1980).
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tendencies would be useful. The ellipsoidal distribution (Campbell, 1986) provides
such a function. It is based on the assumption that the leaf angles in a canopy are
distributed like the angles of normals to small area elements on the surface of an
ellipsoid. A single parameter, x = b/a, is required to describe the shape of the
distribution; b is the horizontal semi-axis of the ellipsoid, and a is the vertical semi-
axis. When x = 1, the ellipsoidal distribution becomes the spherical distribution
given by eqn (9). When x > 1 (oblate spheroid),

2 x2 sin 6;
N = 1
8®) Ai(cos? o) + x2 sin? )2 (10
and when x < 1 (prolate spheroid),
2 x2 sin o;
N = . 11
8®) A2(cos? 8j + x2 sin2 ;)2 an
Here,
A=1+ Inf(1+ep)/(1—eD)] e = (xRl a2
2e1x2
and
Az =1+ Ginlep)f(xez) , ex=(-x2)2 . (13)

Figure 1.2 shows examples of the ellipsoidal angle distribution function for several
values of x.

For most purposes the extinction coefficients G, or K (eqns (2) or (4)) are more
useful than the leaf angle distribution functions. These may be obtained by integrating
the distribution functions using eqn (2), but are often easier to derive by considering
the projected areas of solids having the angle distributions for the given distribution
function (Monteith & Unsworth, 1990). Thus, for a horizontal distribution, G is the

Fig. 1.2. Ellipsoidal inclination angle distributions for several values of x which are
typical of plant canopies.

g8}
2

0 30 60 90

Inclination angle {deg)
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ratio of projected area of a horizontal plane to surface area of the plane, so G = cos 6.
From eqn (4), K =1 for the horizontal distribution. The G and K functions for
other angle distributions are given in Table 1.1. Extinction coefficients are plotted as
functions of zenith angle for several angle distributions in Figs. 1.3 and 1.4.

The assumption that element normals have random azimuthal distribution is in error
for species with heliotropic leaves. Shell & Lang (1975) suggest the use of the von
Mises probability density function to model leaf angle distributions for such canopies.
Mann et al. (1979) propose a much simpler, but less realistic formula based on the
assumption that all heliotropic leaves maintain a constant orientation relative to the
sun. When they are oriented perpendicular to the sun then

grp=28Crj~-n) , (14)

where r represents the zenith and azimuth angles of the solar beam.

Table 1.1. Extinction coefficients for varous angle distribution functions. All except
the heliotropic assume azimuthal symmetry. The beam zenith angle is 6, and the
element inclination angle is 6;. The parameter, x, for the ellipsoidal distribution, is the
ratio of vertical to horizontal projections of canopy elements or G(0)IG(n/2)

Horizontal inclination

G=cos @ K=1
Vertical inclination

G=2sing/n K=2tané/r
Conical inclination, 8+8<n/2,

G=cosecosej, K =cos §;

Conical inclination, 8+8>n/2
G =cos 0 cos 6 [1+2(tan f - B)/x] K = cos 8; [1+2(tan B— By/n]
cos B = 1/(tan 9 tan 6;)

Sphelrical (uniform) distribution

G=7 K =1/(2cos 0)
Heliotropic (leaves perpendicular to solar beam)

G=1 K=1/cos 8

Ellipsoidal distribution

G = (2 cos2 6 + sin2 6)2/4 x) K = (x2 + tan? 0) 2/ Ax)

A =Aj (eqn (12)) for x >1, A = A3 (eqn (13)) for x<1, A=2 for x=1
A is closely approximated by A = [x + 1.774 (x + 1.182)0-733)x
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Fig. 1.3. The extinction coefficient, G, as a function of zenith angle for x values
representing various canopy angle distributions.
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Fig. 1.4. The extinction coefficient, X, as a function of zenith angle for x values
representing various canopy angle distributions.
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Using the extinction coefficients from Table 1.1, it is possible to determine the
probability of a probe encountering 0, 1, 2,... canopy elements as it passes through a
canopy. If canopy elements are randomly dispersed in space, then the number of
contacts along a path through the canopy is a random variable which has a Poisson
distribution function (Nilson, 1971). For a canopy which approximates the Poisson
model, the probability of a probe traversing a distance through the canopy, s, in
direction, r, without intersecting any canopy elements is

Po(z,r) = expl-s u(z) G(6)] , (15
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where u(z) is the area density of canopy elements, and G(6) is the appropriate
extinction coefficient from Table 1.1. The probability of encountering n canopy
elements in a transect of length s in direction r is

Pn(z,r) = [s u(z) G(8)]" exp[—s u(z) G(8)1/n! . (16)
The mean number of intersections is
u(z,r) =s u(z) G(8) , an

and the variance of the number of contacts is equal to the mean.

For a canopy which approximates a Poisson model, relative variance, or ratio of the
variance to the mean is unity. Measurements of relative variance for a canopy are,
therefore, useful for determining how closely real canopies approximate the Poisson
model. When the relative variance for a canopy exceeds unity, the canopy is said to be
clumped or underdispersed, and if it is less than unity, the canopy is overdispersed.
Nilson (1971) discusses positive and negative binomial models to describe such
canopies. Such models have been used by Monteith (1965) and others to describe the
interaction of radiation with canopies.

The most obvious departure from a uniform dispersion of canopy elements occurs
when leaves are clumped around a shoot, or when leaves are clumped around
individual plants or rows of plants, as in a row crop, an orchard, or a sparse forest
stand. Such situations were modelled by Allen (1974), Norman & Jarvis (1975) and
Norman & Welles (1983} as clumps of vegetation, regularly or randomly dispersed,
within which the foliage distribution did follow the Poisson model. Eqns (15) and
(16) may therefore be used to model transmission and absorption of radiation by
individual clumps.

Measurement of canopy structure

We now consider some methods which can be used to obtain the canopy
parameters discussed in the previous sections. Recording of phenological data, plant
populations, locations, and dimensions, heights, and leaf numbers is straightforward,
though tedious, and will not be discussed further here. We will consider the
determination of the area density function, u(z), or its integral, L(z) and the angle
density function, g(z.8), or its integrals, G(6) or K(6). We will also discuss some
methods for determining the mean and variance of the number of intersections of a
probe with canopy elements. Techniques for determining these parameters fall into
three broad categories: direct measurement, indirect measurement, and allometric
determination. Direct measurement methods are those where area and angle
measurements are made directly on canopy elements to determine canopy parameters.
Indirect methods require a model which relates some canopy response, such as light
transmission or reflection, to the canopy structure parameters. The response is
measured under appropriate conditions, and the model is inverted to determine the
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canopy structure parameters. Allometric methods are those which relate easily
measured canopy properties to parameters which are more difficult to determine using
empirically derived relationships. The best known of these are the relationships
between sapwood area and leaf area in trees. We now briefly consider several direct
methods and allometric methods, and then will treat indirect methods in some detail
since they are not widely published elsewhere.

Direct measurement methods

Two methods have been suggested for direct determination of canopy
properties. The stratified-clip method was introduced by Monsi & Saeki (1953), and
has been widely used in studies of canopy structure. Briefly, it consists of defining a
representative volume of foliage, usually using a wire frame, and dividing the volume
into layers which can be clipped to determine area and leaf orientation. The sampling
volume should be large enough to include a relatively large number of plants, (ground
areas of 0.25-2 m? are typical). The canopy is then stratified according to height, leaf
inclination angle, and leaf azimuth angle. A study such as that of Lemeur (1973) is
typical, where up to six canopy layers were defined, with six elevation angle classes
of 15 degrees each, and eight azimuth angle classes of 45 degrees each. Inclination
and azimuth angles may be measured with a protractor and compass for each canopy
element, and then that element is clipped and placed in a labelled polythene bag to
await area measurement. The stratified-clip method is most useful in canopies such as
grasses or small legumes, where plant population densities are high, and studies of
individual plant characteristics would be difficult. This method is obviously not
suitable for forests and other canopies where plants are widely spaced and large.

The second method is called the dispersed-individual-plant (DIP) method (Ross,
1981). The method consists of selecting 1030 plants which are representative of the
canopy and measuring characteristics of those plants, such as leaf area, spatial
distribution of area, leaf angles, node heights, stem diameters, etc. Leaves are again
cut from the plant as their locations and angles are determined. Samples are stratified
at least according to height, inclination angle, and azimuth angle, and may also be
stratified according to distance from the plant axis, to obtain some information on area
density functions for individual plants. The DIP method is well suited to situations
where plant densities are low and plants are large.

Several modifications have been suggested for decreasing the difficulty and
improving the accuracy of these direct methods. Lang (1973) and Lang & Shell
(1976) used a device consisting of three arms connected such that a pointer could be
located at any point within a given canopy volume. Angles between the arms were
measured using precision potentiometers and the voltages from the potentiometers
were sensed using a computer-controlled data logger. The locations of points defining
triangles on the surface of canopy elements are directly entered into the computer, and
the areas, inclinations, and azimuths of the canopy elements are calculated. A number
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of portable logging devices with adequate computing capability for this application are
now commercially available.

Allometric measurement methods

Allometric methods are discussed by Ross (1981), and some have been used
extensively for obtaining the leaf area index of forest canopies (e.g. Grier & Waring,
1974; Kaufmann & Troendle, 1981; Marchand, 1983). Measurements show a linear
relationship between sapwood area and leaf area for a given species and environment.
Sapwood area is estimated, nondestructively, using increment borings. The primary
difficulty of the method is the need to calibrate each species and to make adjustments
for environment. Whitehead, Edwards & Jarvis (1984) suggested a refinement of the
method which appears to eliminate some of the species variability. Water permeability
of the sapwood was measured in addition to area. This accounted for the differences
observed in the relationship between the two species studied. The height distribution
of leaf area can be determined by measuring sapwood area at various heights.

Indirect measurement methods

There are many possible methods for indirect determination of canopy
structure. Those to be discussed here all rely on the insertion of a physical or optical
probe into the canopy to determine either the number of intersections of the probe with
canopy elements within a given canopy volume, or the probability of traversing a
given volume of canopy without intersecting any canopy element.

The first method is called the method of inclined point quadrats. It was first used in
New Zealand by Levy & Madden (1933). Reeve, in an appendix to Warren—Wilson
(1959) provided the necessary analysis for the method to be used to determine area
density and mean inclination angle of canopy elements. Philip (1965) extended the
analysis to determination of the inclination angle distribution function.

The second method is gap fraction analysis. Bonhomme et al. (1974) analysed
fisheye photographs of canopies to determine the distribution of the gap fraction, and
then used a simple method of mathematical inversion to estimate leaf area index. More
sophisticated inversion methods can be used to determine both leaf area index and
leaf angle distributions of canopies (e.g. Norman et al., 1979).

The original inclined point quadrat method made use of a thin, pointed probe,
which was inserted into the canopy at various zenith and azimuth angles. The location
of contacts with canopy elements was recorded for a large number of insertions of the
probe into a given canopy volume. Eqn (17) gives the relationship between the mean
number of intersections of foliage elements, p(z,r), and the area density, u(z). For
canopies with azimuthal symmetry, the relationship between area density and
intersections with foliage elements is found by multiplying both sides of eqn (17) by
2sin 6d9, integrating from 0 to &/2, and noting that

j(;"z G(o)sinedo=1.
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This gives
Wz) = J:’z ((z,0)/s) sin 6 do . (18)

The quantity u(z,8)/s is the mean number of hits at height z in the canopy, averaged
over all azimuth angles, per unit distance, s, traversed by the probe in direction 6.
Once u(z) is known, G(6) may be obtained from eqn (17) by plotting (z,8)/[s u(z)] as
a function of 6.

As previously noted, the relative variance, or ratio of variance of number of hits to
mean number of hits, should be unity for a canopy which meets the assumption of
uniform dispersion. The inclined point quadrat method could be used to estimate the
variance needed for this calculation, though the number of probe insertions required to
accurately determine the variance may be so large as to make the method impractical.

Several modifications to the inclined point quadrat method have been suggested. A
laser probe was substituted for the pointed metal probe by Vanderbilt, Bauer & Silva
(1979). The laser probe can be used for measurements on forest canopies where the
use of the metal probe becomes practically impossible, but the data obtained are
limited to just the location of the first intersection with the canopy. A second
modification was suggested by Caldwell, Harris & Dzurec (1983) who used a motor-
driven probe shaft with an encoder, and a fibre-optic device to record contacts with
canopy elements, thus allowing automatic recording of the contacts.

The main disadvantage of the inclined point quadrat method is the labour required to
obtain the data. Large numbers of probe insertions are needed to obtain reliable
estimates of the canopy structure parameters. Also, the height of a canopy which can
be analysed with the method is limited, unless the laser probe is used.

Gap fraction analyses for determining canopy properties are similar to inclined point
quadrat analyses, except that only the'probability of zero intersections (F, in eqn (15))
is known. Since the argument in the exponent of eqn (15) is just the mean number
of intersections, the analyses presented here of gap fraction information could as well
apply to inclined point quadrats.

Gap fraction measurements have generally been obtained using light as the probe. A
measurement of the fractional length of a transect under a plant canopy that is exposed
to direct beam radiation is sufficient for the calculation. Measurements can be made
manually, by measuring the total length of sunflecks along a tape or metre stick, or
with light sensors. In tall canopies, penumbral effects smudge the boundaries and
only methods using sensors that differentiate between beam and diffuse are suitable.
Lang, Xiang Yuequin & Norman (1985) describe a sensor that can be used to
determine the gap fraction along a transect. Briefly, it consists of a filtered silicon cell
at the end of a collimating tube. Filters limit the response of the silicon cell to
wavelengths around 430 nm, and the collimator limits the view angle to 0.302 sr. A
sighting tube aids in the alignment of the sensor so that it only sees beam radiation.
The sensor is mounted on a track or cable so that it can be moved through the canopy
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at various heights. The gap fraction of the canopy is determined by measuring the
mean transmission for beam radiation along the transect. Transects are made at several
times on clear days with the sun at different elevation angles.

Fisheye photographs made either from below (Anderson, 1970; Bonhomme &
Chartier, 1972; Fuchs & Stanhill, 1980) or from above the canopy (Bonhomme,
Varlet Grancher & Chartier, 1974) can also be used for determining the gap fraction of
canopies. A single fisheye photograph shows the gaps for all azimuth and zenith
angles of the hemisphere seen by the lens, but measurements from several photo-
graphs are needed to give reliable estimates of gap fraction functions because of the
variability of canopies. The photographs may be analysed, either manually (Anderson,
1970) or automatically (Bonhomme & Chartier, 1972) to determine the gap fraction.
The photographs should be taken only under diffuse light (on an overcast day, or just
before sunrise or after sunset). Beam radiation reflected from canopy elements, or the
presence of the solar beam in the photograph can cause such non-uniform exposure
that analysis of the photograph is difficult or impossible.

A modified form of eqn (15) is used to find the leaf area index and leaf angle
distribution from the gap fraction data. If G(8) is constant throughout the canopy, a
canopy transmission coefficient, 7(z), for beam radiation can be defined as:

(z) = exp[-K(8,8)) L(z)] . (19)

Eqn (19) can be used in various ways to determine the leaf area index, and possibly
also the leaf angle distribution function for a canopy. The simplest application is that
of Bonhomme et al. (1974). Fig. 1.4 shows that the extinction coefficients for all
angle distribution functions are near unity when the zenith angle is around 60 degrees.
Bonhomme et al. used fisheye pictures, taken from above the canopy to determine the
gap fraction at zenith angle of 57.5 degrees. They determined that the average K value
for this zenith angle for all canopy types was 1.12 so leaf area index was calculated
from eqn (19) using the measured gap fraction at 57.5 degrees and a K value of 1.12.
Excellent agreement was observed between measured and predicted leaf area index up
to Ly of about 1.

Additional information about the canopy can be obtained from measurements of gap
fractions at other zenith angles. If we consider the canopy to be composed of
independent elements, each having a given area index, L;, a given inclination angle,
8;, and a given extinction coefficient, K(8,8;), then the probability of a ray penetrating
the entire canopy is the product of the probabilities of a ray penetrating each of the
populations or classes of individual canopy elements. Using eqn (19), we can
therefore write

—Inft(8)] = 2 L;K(9,6;) . 20)
i

If values for () are known for a number of values of 8, and K(8,6;) is computed for
each zenith angle and leaf angle class then eqn (20) can be solved to give the L;
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values. If the number of angle classes, i, is equal to the number of zenith angles, eqn
(20) represents a set of m linear equations in m unknowns, which is readily solved. If
the number of zenith angles is greater than the number of angle classes, the problem is
a linear least squares problem, and values of L; are sought which minimise the sum of
squares of differences between measured and predicted values of 1n[t(6)]. The sum of
the values of L; obtained in this way is the leaf area index, and the leaf angle
distribution function can be estimated from the fraction of the leaf area in each leaf
angle class. It is appropriate to minimise differences in In 1 rather than 1 because
errors in the T measurement are likely to be a fairly constant fraction of the
measurement, and © is therefore likely to have a log-normal distribution.

The values for L; determined by standard least squares procedures are not
constrained to physically realistic values, and can therefore be positive or negative. A
negative leaf area index may give a good fit to the data, but is obviously not an
acceptable solution. The least squares solution to eqn (20) must therefore be
constrained to give only positive values for the L;. Methods for constraining the
solution are given by Menke (1984) and Lang et al. (1985). Menke gives FORTRAN
code for implementing a least squares fit to data with positivity constraints.

A simpler method for finding area index assumes the ellipsoidal distribution and
solves eqn (19) by a least squares method for x and L. We would like to find values
for x and L which minimise

F=X(nr;+K(®;,x) )2, 21

subject to the constraint, x > 0. The minimum can be found by solving 3aF/oL = 0
and oF/ox, simultaneously. From the first equation we obtain

L =-Z [K(8;, x) In t;l/ZK(8;, x)%, (22)
and from the second,
L = —X[ln 1; aK(8;, x)/ax]/Z[K(6;, x) dK(8;, x)/0x] . (23)

To solve the equations, L can be eliminated between them, and x found by the
bisection method. Once x is known, L is found from eqn (22). Fig. 1.5 is a BASIC
computer program which illustrates the bisection method and finds L and x from
measured transmission coefficient data.

All of the inversion methods discussed so far rely on the assumption that the
canopy elements are randomly dispersed in space. This is obviously not a good
assumption for row crops before canopy closure, for coniferous trees or for canopies
which never close, such as in desert vegetation. Canopies with heliotropic leaves or
regular dispersion also violate this assumption. Lang er al. (1985) show examples of
the errors that can arise when gap fraction inversion methods are applied to both row
crops and crops with heliotropic leaves. In such cases a more sophisticated model and
inversion method is needed. For row crops, the model of Mann ez al. (1979) or



